Charpit’s method to find the complete integral∗
نویسنده
چکیده
These equations are called Lagrange–Charpit equations. In interpreting these equations, it is convenient to allow zero denominators. For example, if Fp = 0, these equations require that dx = 0; that is, the denominator being zero just means that the numerator is also zero. Assume that from equations (1) and (2) one can derive a new equation (3) φ(x, y, u, p, q) = a, ∗Written for the course Mathematics 4211 at Brooklyn College of CUNY.
منابع مشابه
Nonclassical Contact Symmetries and Charpit’s Method of Compatibility
Charpit’s method of compatibility and the method of nonclassical contact symmetries for first order partial differential equation are considered. It is shown that these two methods are equivalent as Charpit’s method leads to the determining equations arising from the method of nonclassical contact symmetries. Several examples are considered illustrating how Charpit’s method leads quickly and ea...
متن کاملSolvability of infinite system of nonlinear singular integral equations in the C(Itimes I, c) space and modified semi-analytic method to find a closed-form of solution
In this article, we discuss about solvability of infinite systems of singular integral equations with two variables in the Banach sequence space $C(I times I, c)$ by applying measure of noncompactness and Meir-Keeler condensing operators. By presenting an example, we have illustrated our results. For validity of the results we introduce a modified semi-analytic method in the case of tw...
متن کاملOn $F$-Weak Contraction of Generalized Multivalued Integral Type Mappings with $alpha $-admissible
The purpose of this work is to investigate the existence of fixed points of some mappings in fixed point theory by combining some important concepts which are F-weak contractions, multivalued mappings, integral transformations and α-admissible mappings. In fixed point theory, it is important to find fixed points of some classess under F- or F-weak contractions. Also multivalued mappings is the ...
متن کاملA wavelet method for stochastic Volterra integral equations and its application to general stock model
In this article,we present a wavelet method for solving stochastic Volterra integral equations based on Haar wavelets. First, we approximate all functions involved in the problem by Haar Wavelets then, by substituting the obtained approximations in the problem, using the It^{o} integral formula and collocation points then, the main problem changes into a system of linear or nonlinear equation w...
متن کاملB-spline Method for Solving Fredholm Integral Equations of the First Kind
In this paper, we use the collocation method for to find an approximate solution of the problem by cubic B-spline basis. The proposed method as a basic function led matrix systems, including band matrices and smoothness and capability to handle low calculative costly. The absolute errors in the solution are compared to existing methods to verify the accuracy and convergent nature of propo...
متن کامل